Wearable technology mediated biofeedback to modulate spine motor control: a scoping review

Scritto il 01/10/2024
da Aurora Battis

BMC Musculoskelet Disord. 2024 Oct 1;25(1):770. doi: 10.1186/s12891-024-07867-3.

ABSTRACT

BACKGROUND: Lower back pain (LBP) is a disability that affects a large proportion of the population and treatment for this condition has been shifting towards a more individualized, patient-centered approach. There has been a recent uptake in the utilization and implementation of wearable sensors that can administer biofeedback in various industrial, clinical, and performance-based settings. Despite this, there is a strong need to investigate how wearable sensors can be used in a sensorimotor (re)training approach, including how sensory biofeedback from wearable sensors can be used to improve measures of spinal motor control and proprioception.

RESEARCH QUESTION: The purpose of this scoping review was to examine the wide range of wearable sensor-mediated biofeedback frameworks currently being utilized to enhance spine posture and motor function.

METHODS: A comprehensive scoping review was conducted in adherence with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines extension for Scoping Reviews (PRISMA-ScR) across the following databases: Embase, PubMed, Scopus, Cochrane, and IEEEXplore. Articles related to wearable biofeedback and spine movement were reviewed dated from 1980 - 2020. Extracted data was collected as per a predetermined checklist including the type, timing, trigger, location, and magnitude of sensory feedback being applied to the body.

RESULTS: A total of 23 articles were reviewed and analysed. The most used wearable sensor to inform biofeedback were inertial measurement units (IMUs). Haptic (vibrotactile) feedback was the most common sensory stimulus. Most studies used an instantaneous online trigger to initiate sensory feedback derived from information pertaining to gross lumbar angles or the absolute orientations of the thorax or pelvis.

CONCLUSIONS: This is the first study to review wearable sensor-derived sensory biofeedback to modulate spine motor control. Although the type of wearable sensor and feedback were common, this study highlights the lack of consensus regarding the timing and structure of sensory feedback, suggesting the need to optimize any sensory feedback to a specific use case. The findings from this study help to improve the understanding surrounding the ecological utility of wearable sensor-mediated biofeedback in industrial, clinical, and performance settings to enhance the sensorimotor control of the lumbar spine.

PMID:39354458 | PMC:PMC11446096 | DOI:10.1186/s12891-024-07867-3