Toward a Computable Phenotype for Determining Eligibility of Lung Cancer Screening Using Electronic Health Records

Scritto il 17/01/2025
da Shuang Yang

JCO Clin Cancer Inform. 2025 Jan;9:e2400139. doi: 10.1200/CCI.24.00139. Epub 2025 Jan 16.

ABSTRACT

PURPOSE: Lung cancer screening (LCS) has the potential to reduce mortality and detect lung cancer at its early stages, but the high false-positive rate associated with low-dose computed tomography (LDCT) for LCS acts as a barrier to its widespread adoption. This study aims to develop computable phenotype (CP) algorithms on the basis of electronic health records (EHRs) to identify individual's eligibility for LCS, thereby enhancing LCS utilization in real-world settings.

MATERIALS AND METHODS: The study cohort included 5,778 individuals who underwent LDCT for LCS from 2012 to 2022, as recorded in the University of Florida Health Integrated Data Repository. CP rules derived from LCS guidelines were used to identify potential candidates, incorporating both structured EHR and clinical notes analyzed via natural language processing. We then conducted manual reviews of 453 randomly selected charts to refine and validate these rules, assessing CP performance using metrics, for example, F1 score, specificity, and sensitivity.

RESULTS: We developed an optimal CP rule that integrates both structured and unstructured data, adhering to the US Preventive Services Task Force 2013 and 2020 guidelines. This rule focuses on age (55-80 years for 2013 and 50-80 years for 2020), smoking status (current, former, and others), and pack-years (≥30 for 2013 and ≥20 for 2020), achieving F1 scores of 0.75 and 0.84 for the respective guidelines. Including unstructured data improved the F1 score performance by up to 9.2% for 2013 and 12.9% for 2020, compared with using structured data alone.

CONCLUSION: Our findings underscore the critical need for improved documentation of smoking information in EHRs, demonstrate the value of artificial intelligence techniques in enhancing CP performance, and confirm the effectiveness of EHR-based CP in identifying LCS-eligible individuals. This supports its potential to aid clinical decision making and optimize patient care.

PMID:39818952 | PMC:PMC11748906 | DOI:10.1200/CCI.24.00139