J Biomed Opt. 2025 Jan;30(1):016004. doi: 10.1117/1.JBO.30.1.016004. Epub 2025 Jan 16.
ABSTRACT
SIGNIFICANCE: Machine learning models for the direct extraction of tissue parameters from hyperspectral images have been extensively researched recently, as they represent a faster alternative to the well-known iterative methods such as inverse Monte Carlo and inverse adding-doubling (IAD).
AIM: We aim to develop a Bayesian neural network model for robust prediction of physiological parameters from hyperspectral images.
APPROACH: We propose a two-component system for extracting physiological parameters from hyperspectral images. First, our system models the relationship between the measured spectra and the tissue parameters as a distribution rather than a point estimate and is thus able to generate multiple possible solutions. Second, the proposed tissue parameters are then refined using the neural network that approximates the biological tissue model.
RESULTS: The proposed model was tested on simulated and in vivo data. It outperformed current models with an overall mean absolute error of 0.0141 and can be used as a faster alternative to the IAD algorithm.
CONCLUSIONS: Results suggest that Bayesian neural networks coupled with the approximation of a biological tissue model can be used to reliably and accurately extract tissue properties from hyperspectral images on the fly.
PMID:39822706 | PMC:PMC11737236 | DOI:10.1117/1.JBO.30.1.016004