3D Print Addit Manuf. 2024 Jun 18;11(3):954-976. doi: 10.1089/3dp.2023.0127. eCollection 2024 Jun.

ABSTRACT

Soft robots, inspired by living organisms in nature, are primarily made of soft materials, and can be used to perform delicate tasks due to their high flexibility, such as grasping and locomotion. However, it is a challenge to efficiently manufacture soft robots with complex functions. In recent years, 3D printing technology has greatly improved the efficiency and flexibility of manufacturing soft robots. Unlike traditional subtractive manufacturing technologies, 3D printing, as an additive manufacturing method, can directly produce parts of high quality and complex geometry for soft robots without manual errors or costly post-processing. In this review, we investigate the basic concepts and working principles of current 3D printing technologies, including stereolithography, selective laser sintering, material extrusion, and material jetting. The advantages and disadvantages of fabricating soft robots are discussed. Various 3D printing materials for soft robots are introduced, including elastomers, shape memory polymers, hydrogels, composites, and other materials. Their functions and limitations in soft robots are illustrated. The existing 3D-printed soft robots, including soft grippers, soft locomotion robots, and wearable soft robots, are demonstrated. Their application in industrial, manufacturing, service, and assistive medical fields is discussed. We summarize the challenges of 3D printing at the technical level, material level, and application level. The prospects of 3D printing technology in the field of soft robots are explored.

PMID:39359605 | PMC:PMC11442412 | DOI:10.1089/3dp.2023.0127